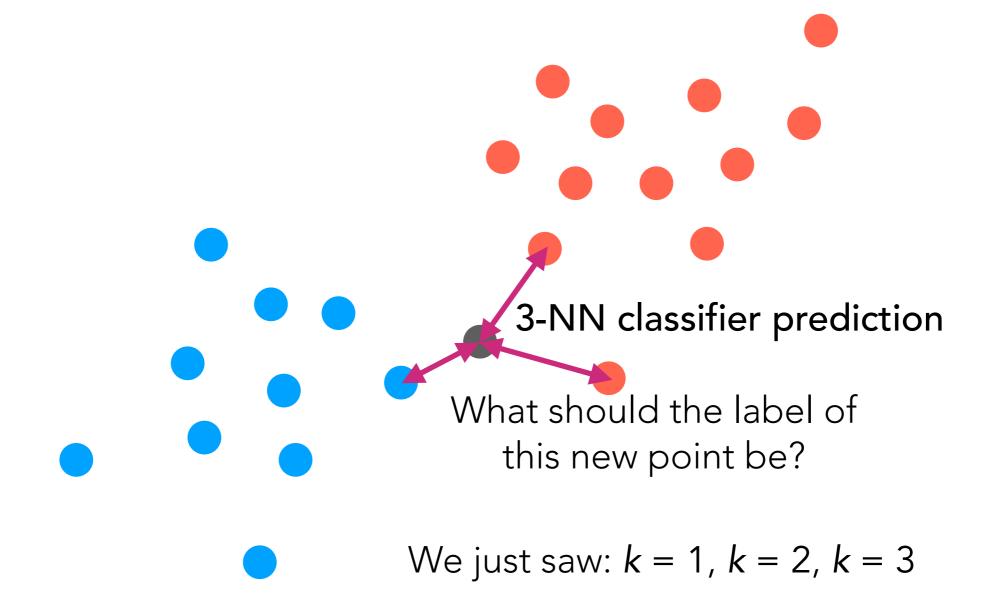


95-865 Unstructured Data Analytics

Lecture 11: Wrap up basic prediction concepts; intro to neural nets & deep learning

> Nearly all slides by George H. Chen with a few by Phillip Isola

(Flashback) Example: k-NN Classification



What happens if k = n?

(Flashback)

How do we choose k?

What I'll describe next can be used to select hyperparameter(s) for any prediction method

Fundamental question: How do we assess how good a prediction method is?

(Flashback) Hyperparameters vs. Parameters

- We fit a model's parameters to training data (terminology: we "learn" the parameters)
- We pick values of hyperparameters and they do *not* automatically get fit to training data
- Example: Gaussian mixture model
 - Hyperparameter: number of clusters k
 - Parameters: cluster probabilities, means, covariance matrices
- Example: *k*-NN classification
 - Hyperparameter: number of nearest neighbors k
 - Parameters: N/A

Actually, there's another hyperparameter: distance function to use (for simplicity, we assume Euclidean distance for now) Major assumption: training and test data "look alike" (technically: training and test data are i.i.d. sampled from the same underlying distribution)

Prediction is harder when training and test data appear quite different!



we know whether it is spam/ham

spam/ham

(shuffling makes sense since we assume data are i.i.d.)

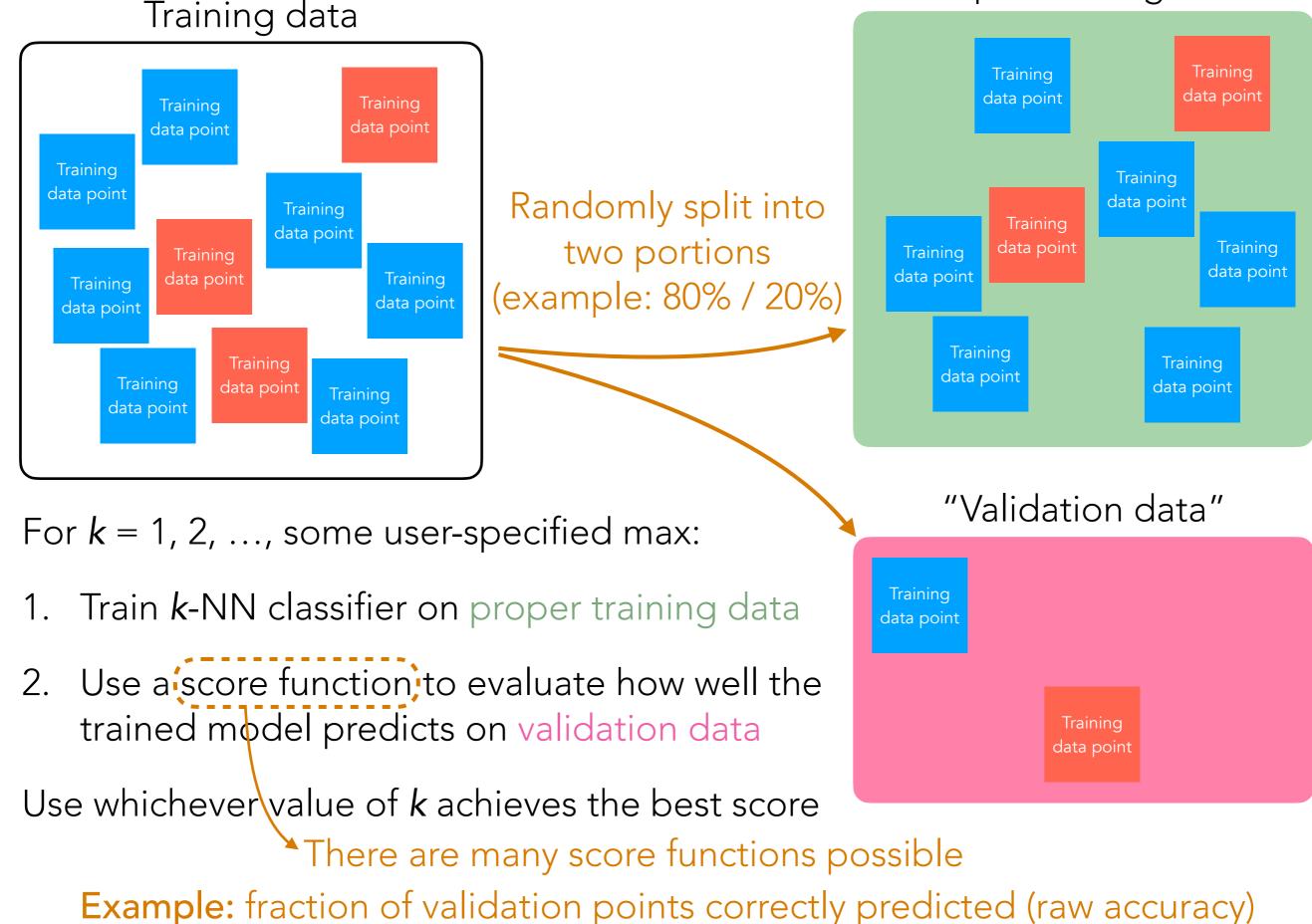
Predicted labels on validation data

50%

Training	Training	Training	Training	Training	data
Training data point	Training data point	Training data point	Training data point	data point	Training data point
Training	Training	Training	Training	Training	
data point	data point	data point	data point	data point	Training data point
Train method on data in green Predict on					
) Terminology " Proper tra " (the gre	Compute prediction accuracy				
This is called data solitting/"train-validation solit"					

This is called data splitting/"train-validation split In this example: we did a 80%-20% split

Some people, including sklearn, call this "train-test split" but in this class, we will use "test data" to refer to true test data that the training procedure does not see

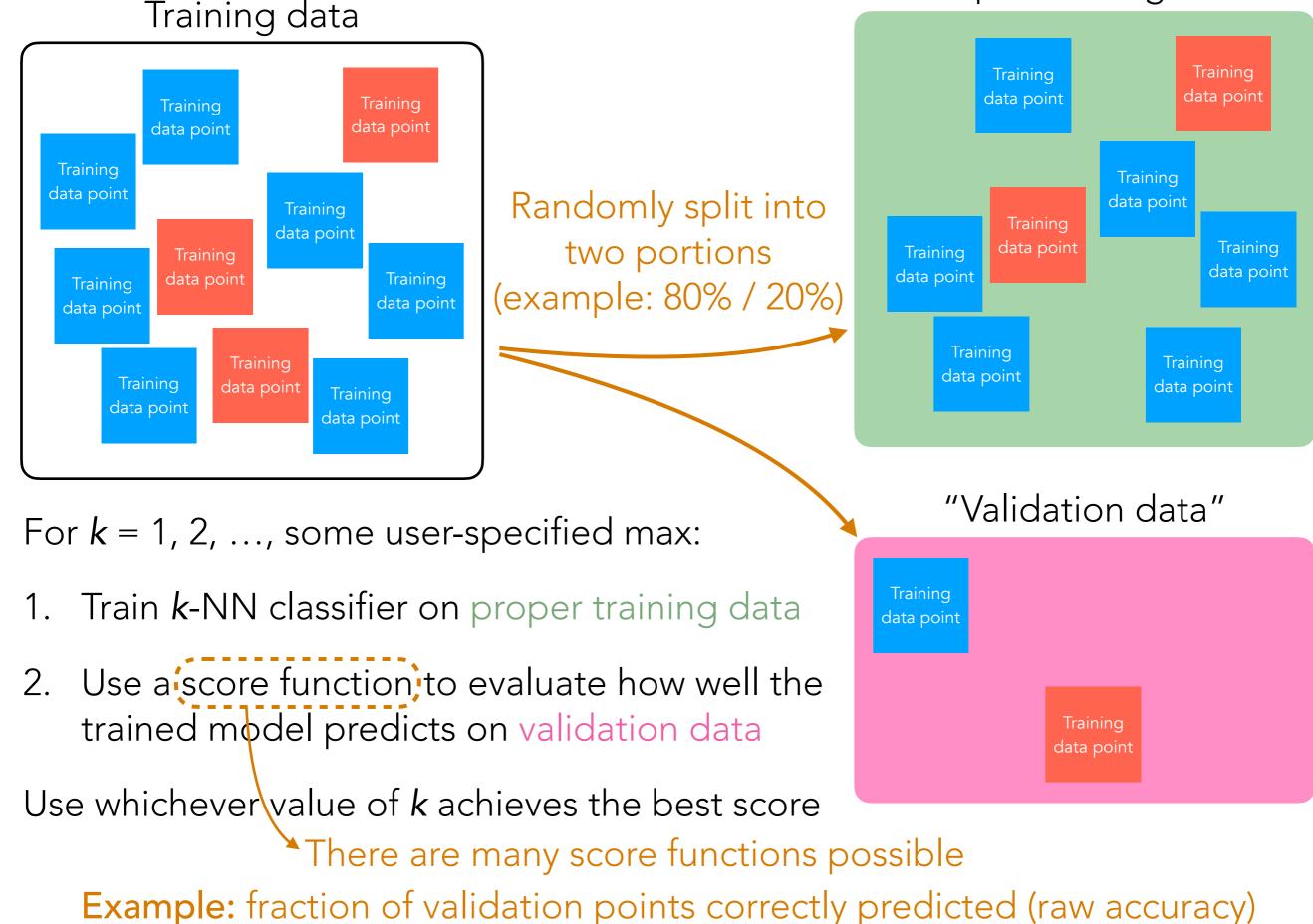


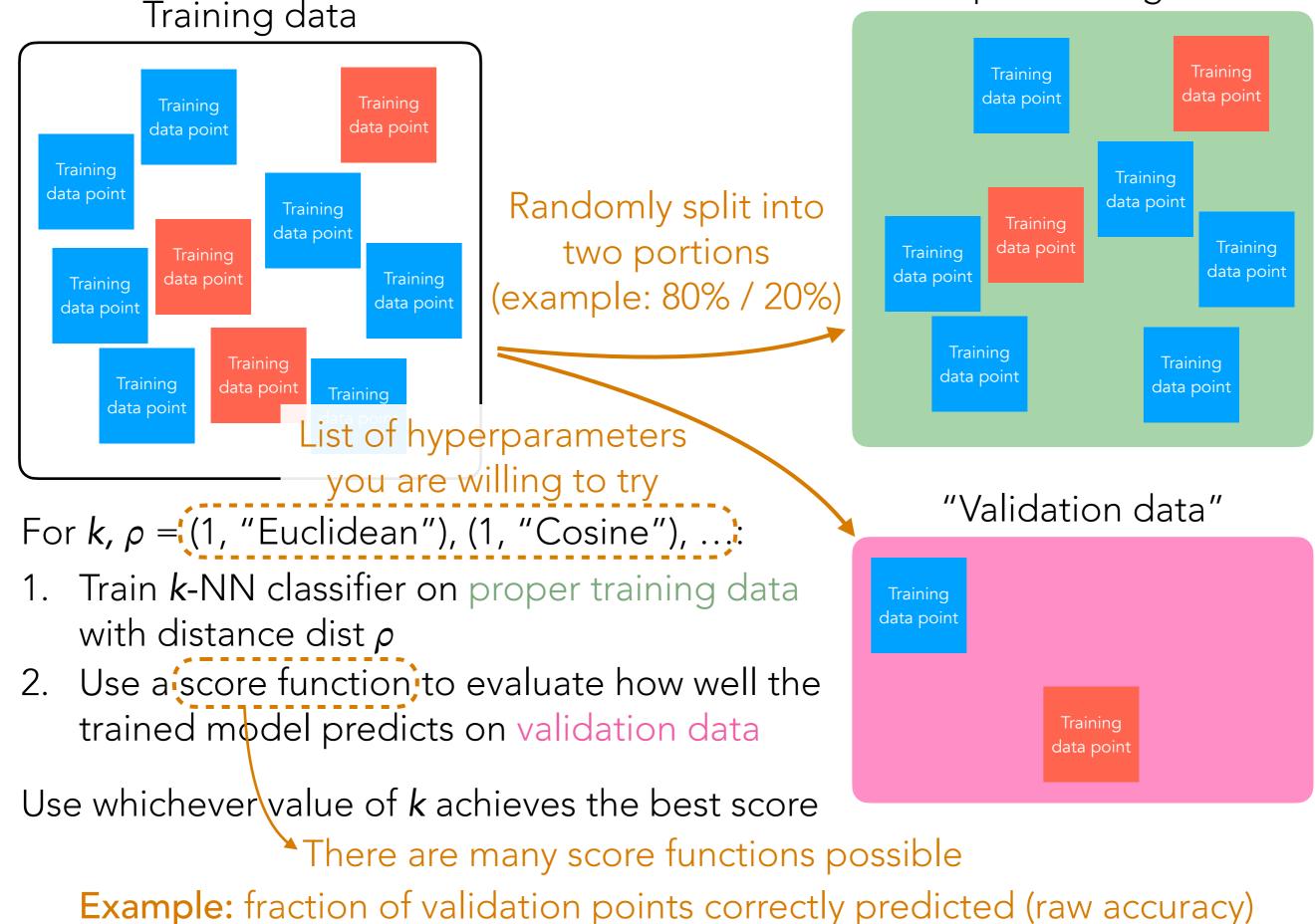
Terminology Remarks

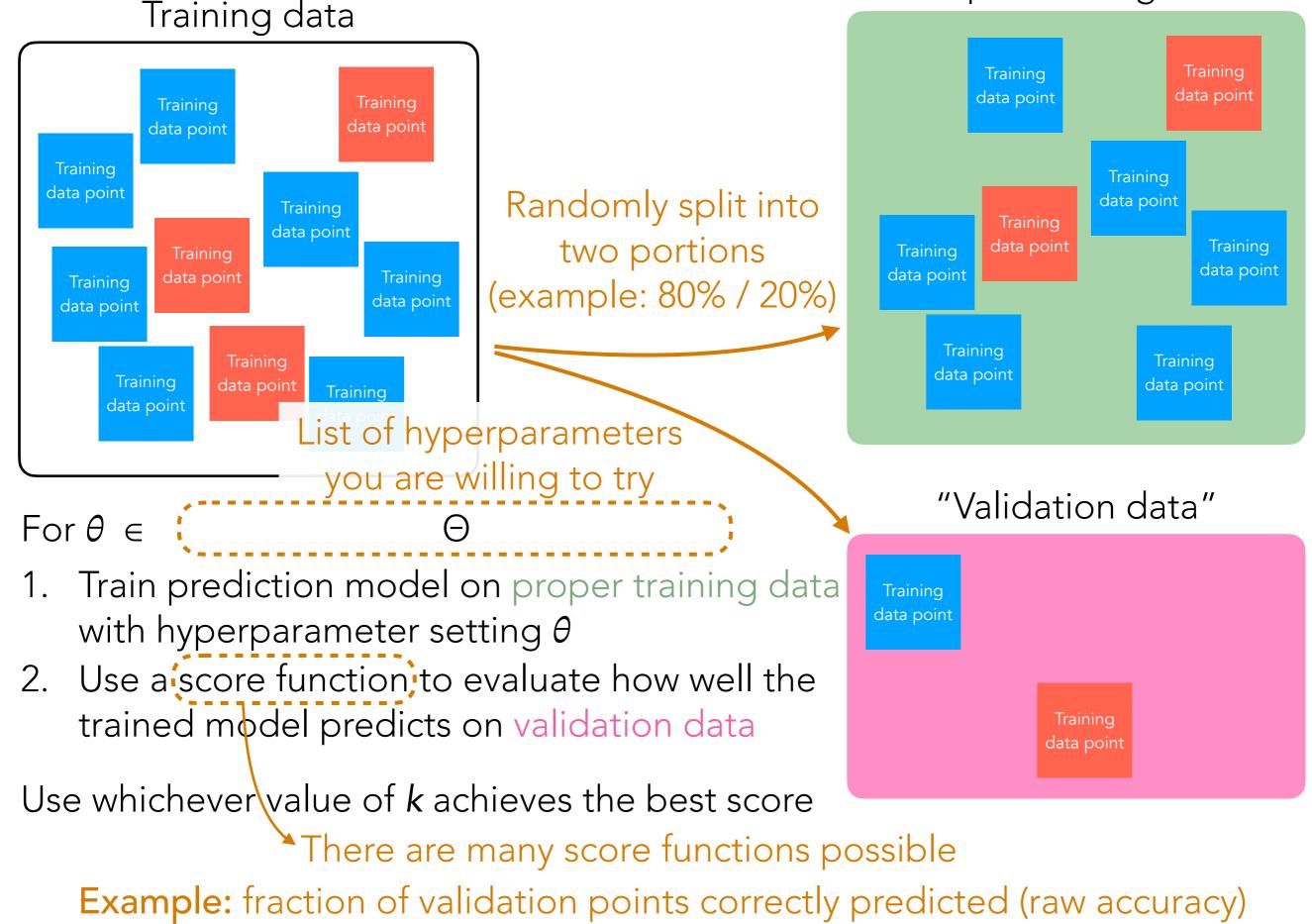
- What we're using is commonly called a **train/validation split**
 - If you also consider that there's a test set that's <u>not</u> part of train/validation data: division is called train/validation/test split
- Warning: in the machine learning community, what I'm calling the "proper training data"/"proper training set" is commonly also called the "training data"/"training set" even though it is typically a *subset* of the full training data (that we split into proper training/validation sets)
 - Put another way: what precisely the "training data" refers to can be ambiguous as it could mean the <u>full training data</u> or the <u>full training data minus the validation data</u>
 - In 95-865, to avoid confusion, we use the somewhat non-standard terminology "proper training set"/"proper training data" to refer to the the <u>full training data minus the validation data</u>

Hyperparameter Tuning for k-NN Classifier

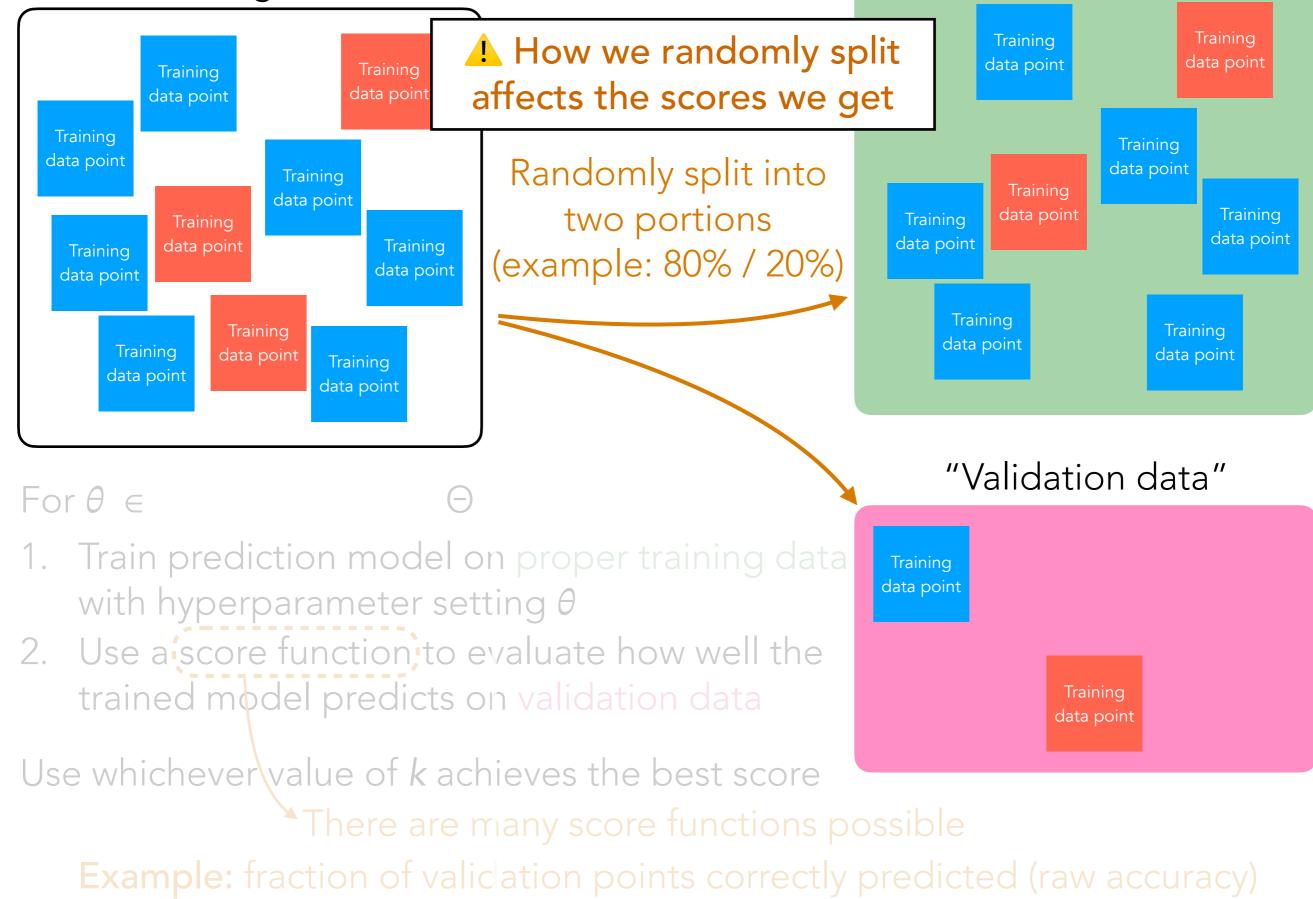
Demo

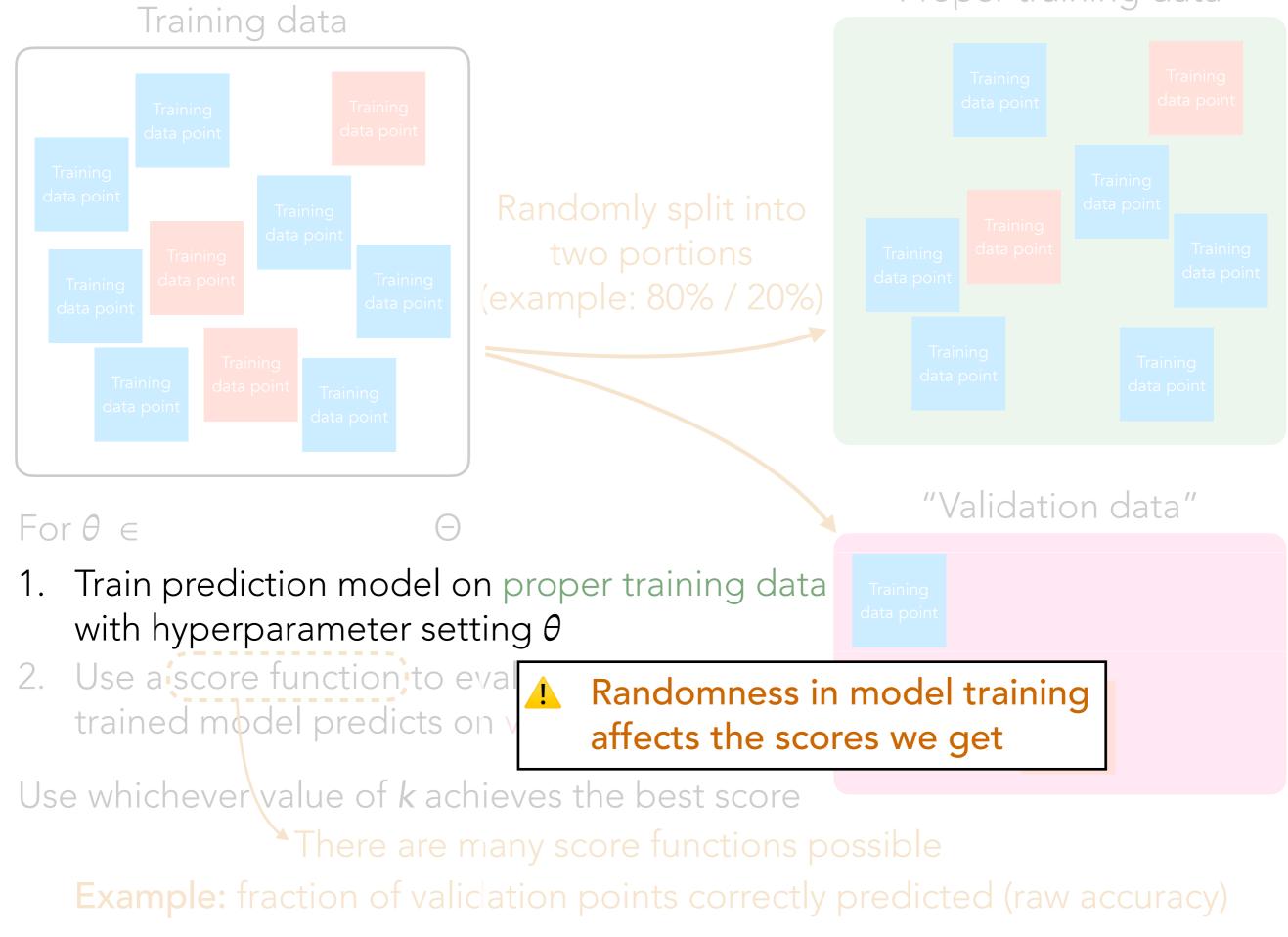


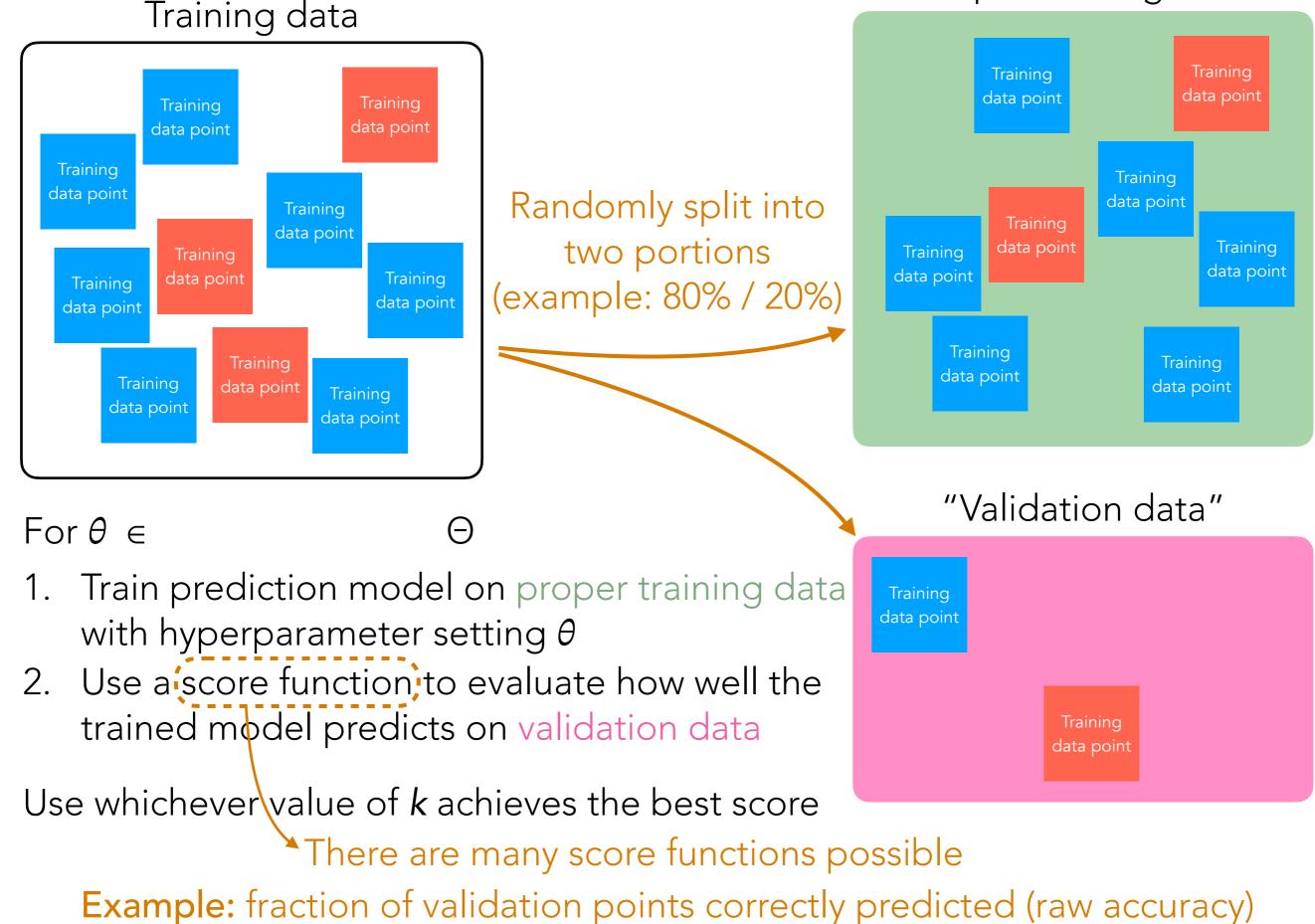




Training data







The rest of the prediction models we consider in UDA will be based on *neural nets* (which commonly have hyperparameters!)

Neural net models can be tuned in the same manner we just saw for k-NN classification

Important: some of you may have seen cross-validation before

- If you don't know what this is, don't worry about it
- Cross-validation is commonly too expensive for neural net training so we stick to the train/val split strategy

Neural Nets & Deep Learning

Extremely useful in practice:

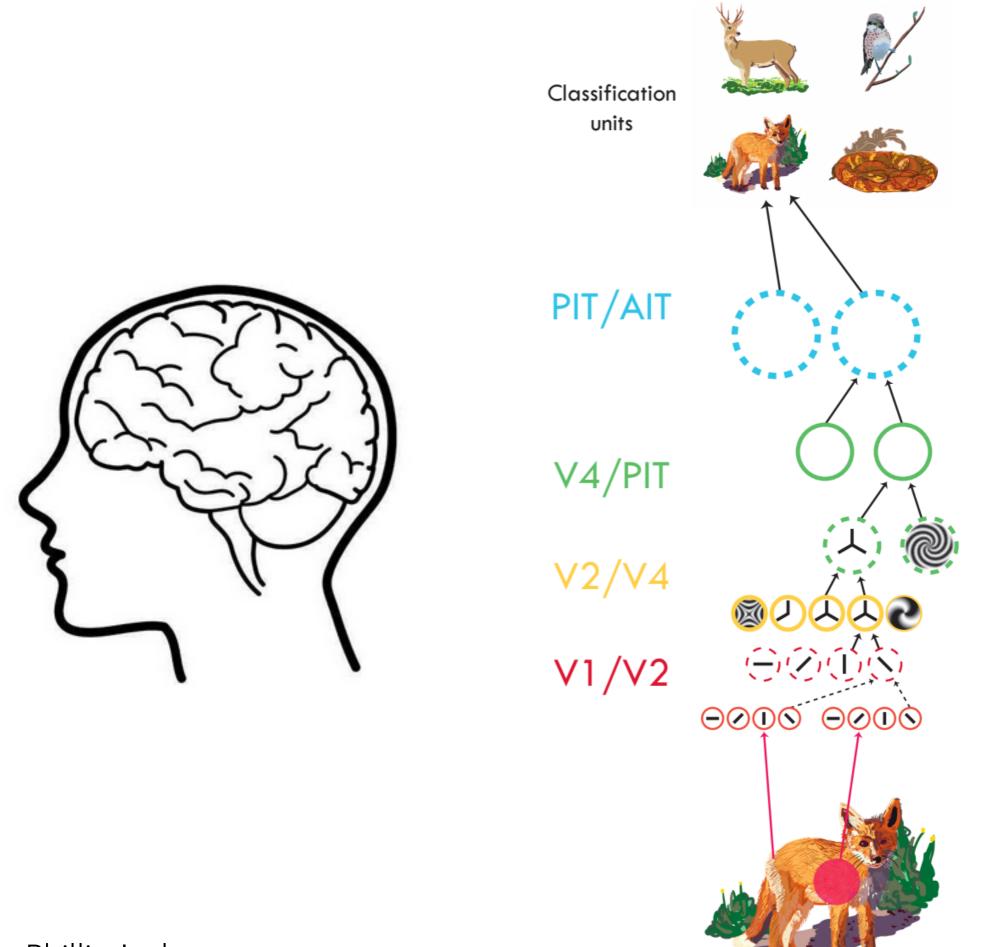
- Human-level image classification
- Human-level speech recognition
- Human-level in machine translation, text-to-speech
- Self-driving cars
- Better than humans at playing Go and many other games
- Capable of generating fake images, video, and audio that look real
- Human-level chatbots (ChatGPT, GPT4.0, Gemini, Claude, ...)

A We don't fully understand when many of these technologies fail or how best to prevent their misuse

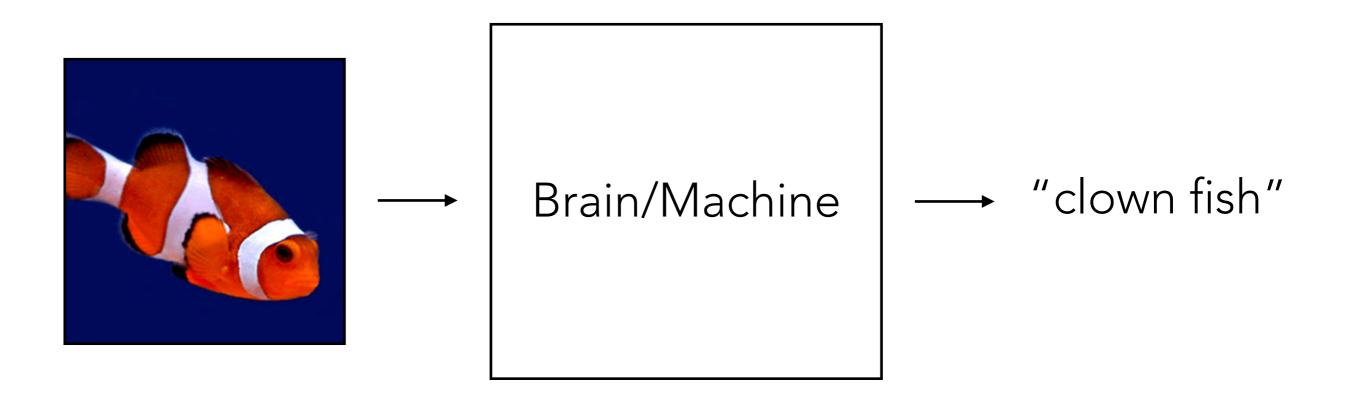
All of this technology will get better over time

Sometimes, I think the question isn't whether you ask chatbots for help, the question is whether in a few years they'll bother asking you for help

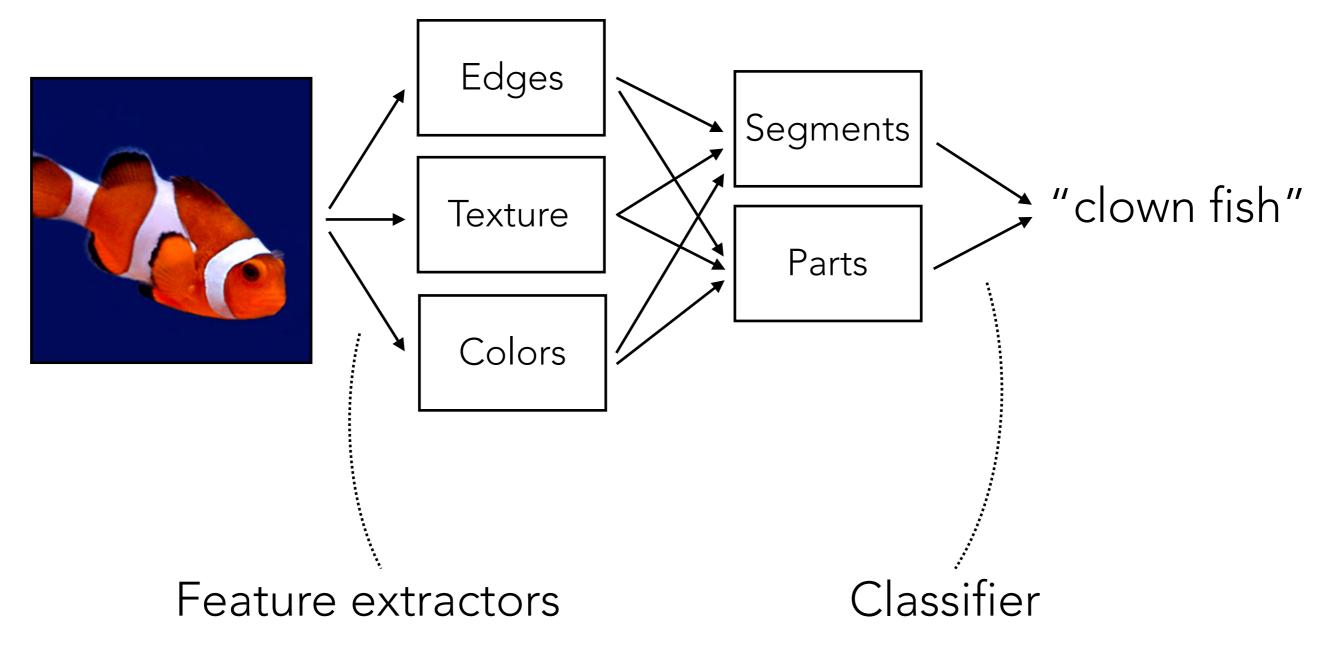
What is deep learning?

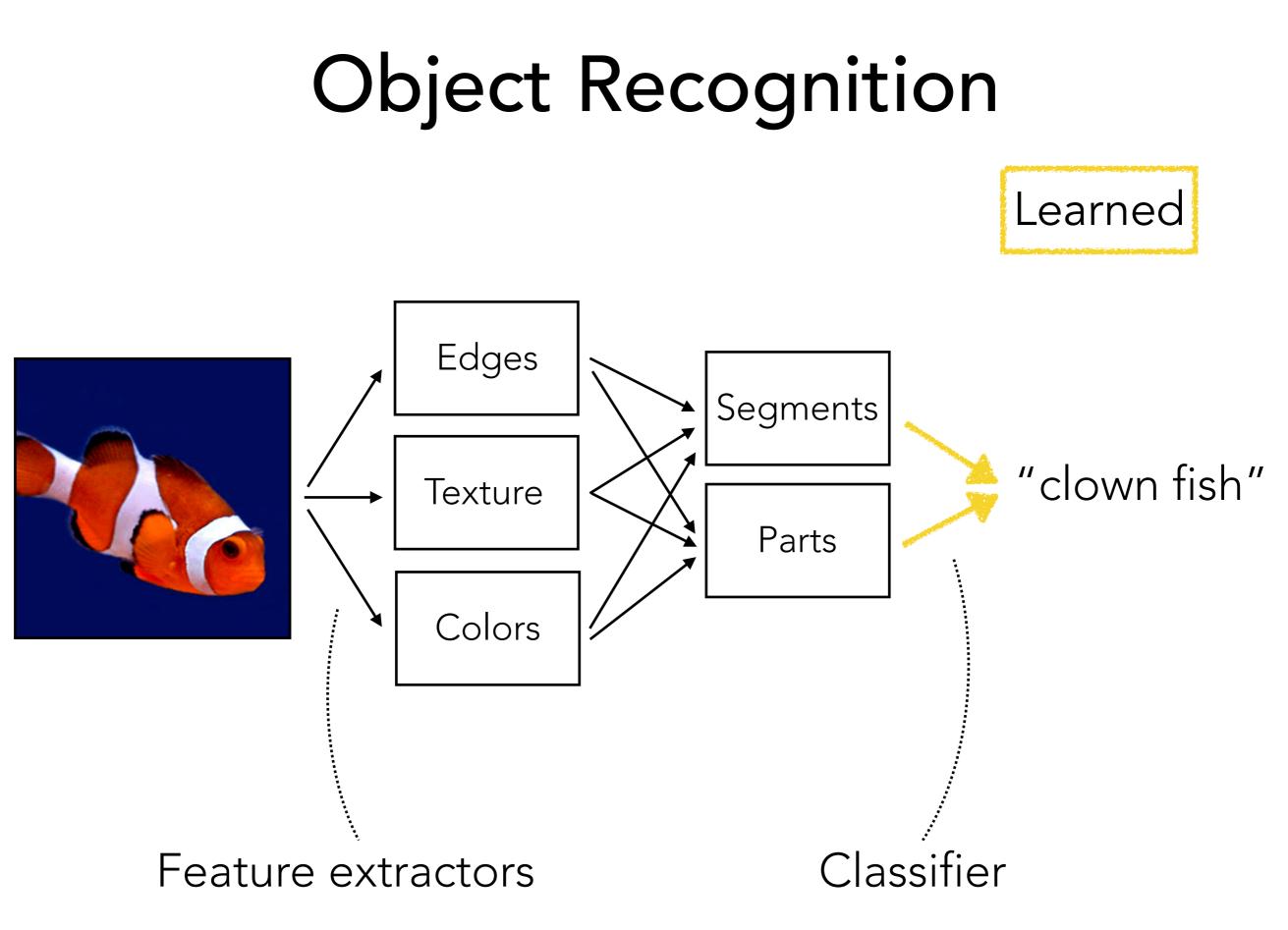


Basic Idea

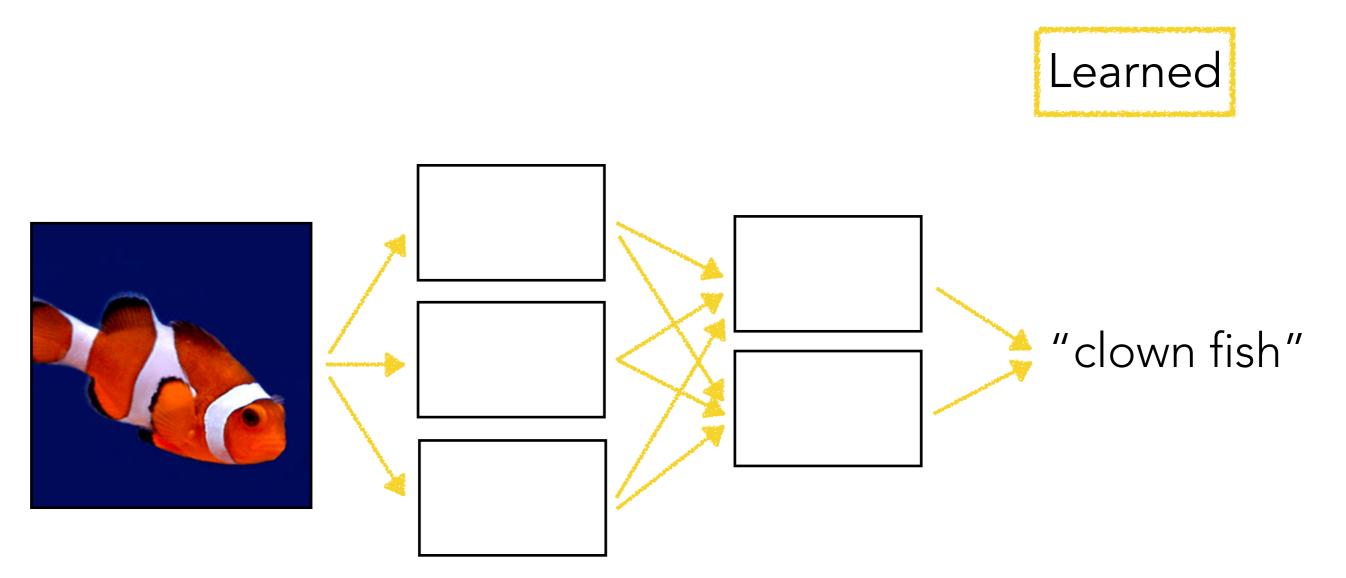


Object Recognition

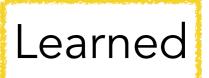


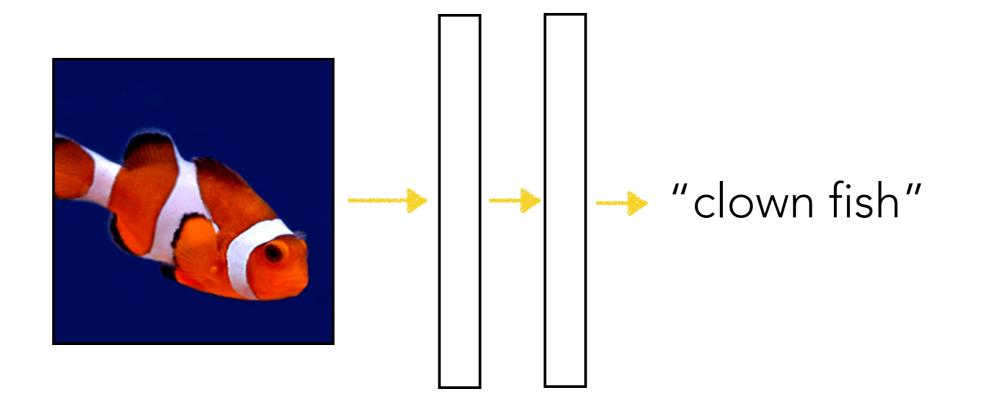


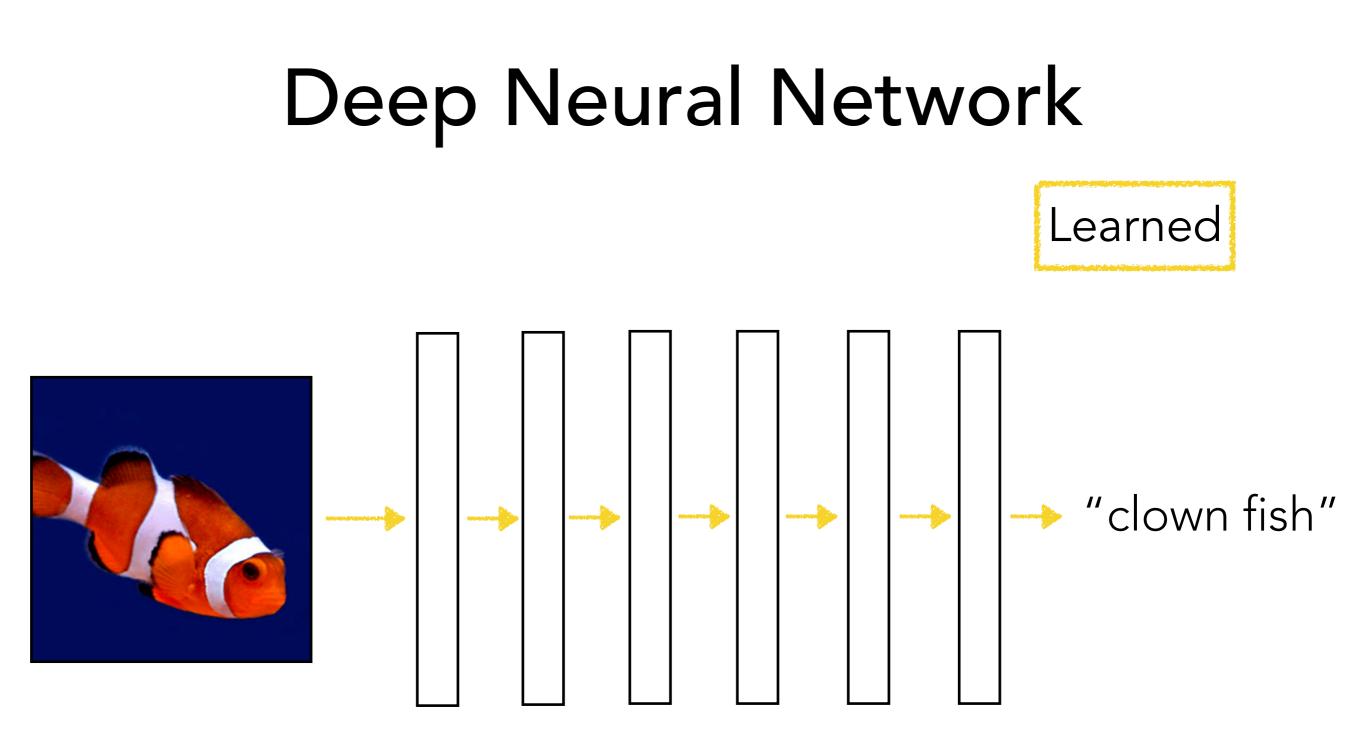
Neural Network



Neural Network







Deep learning just refers to learning deep neural nets

Crumpled Paper Analogy

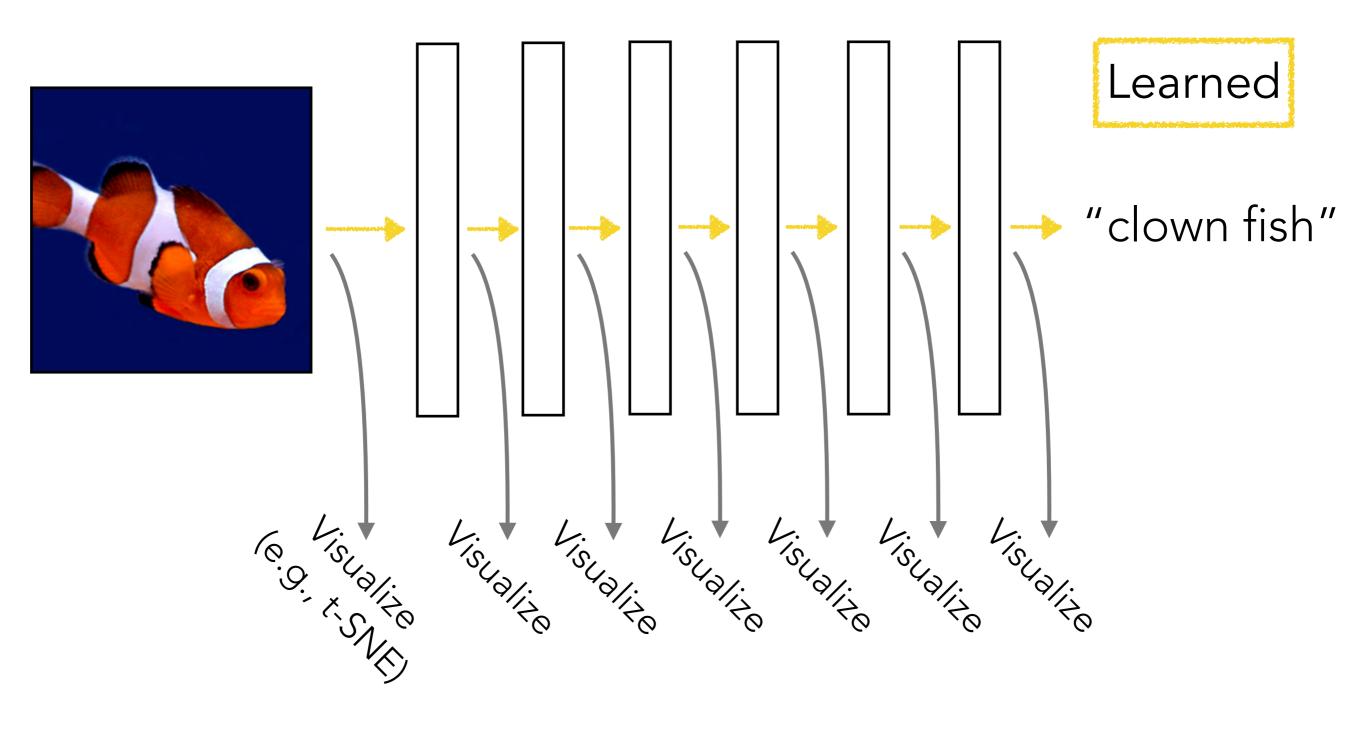
binary classification: 2 crumpled sheets of paper corresponding to the different classes

deep learning: series ("layers") of simple unfolding operations to try to disentangle the 2 sheets

Analogy: Francois Chollet, photo: George Chen

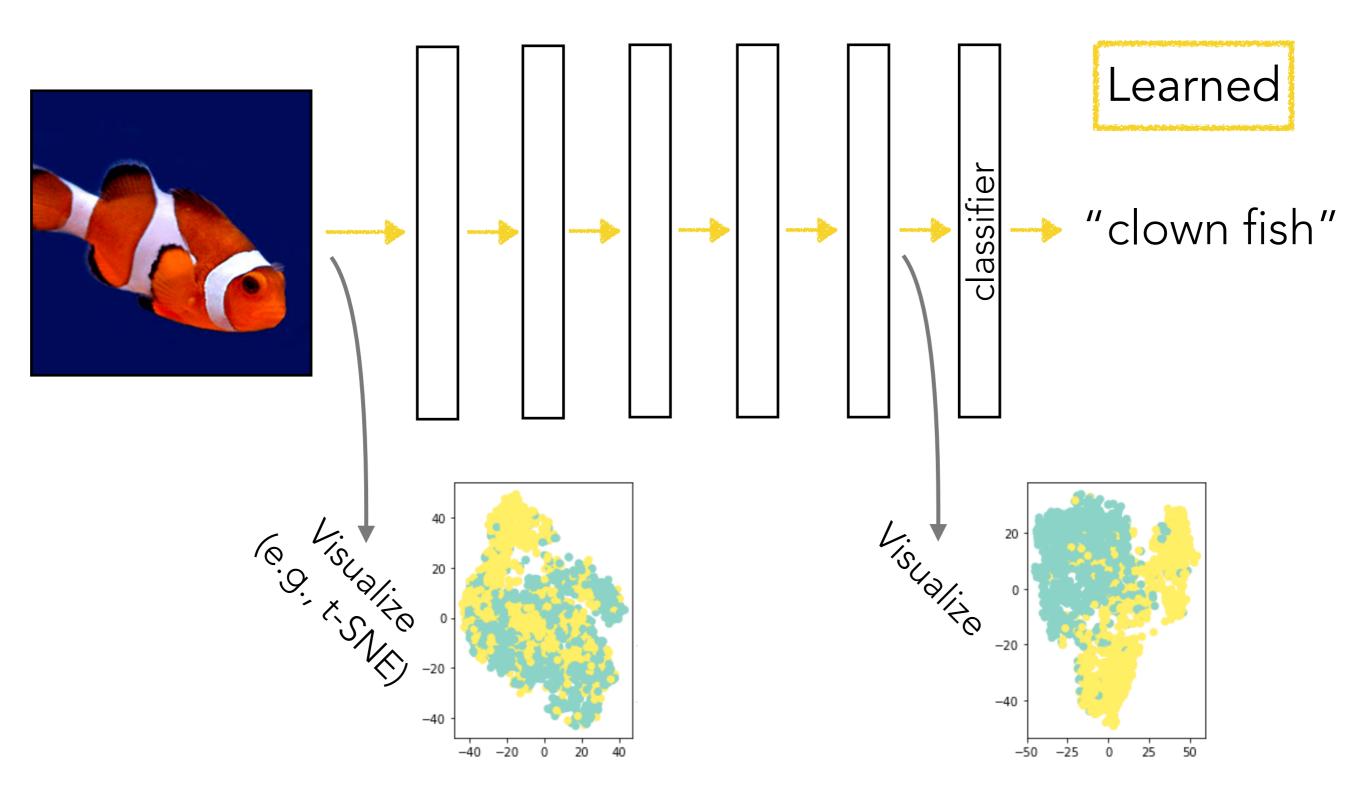
Representation Learning

Each layer's output is another way we could represent the input data



Representation Learning

Each layer's output is another way we could represent the input data



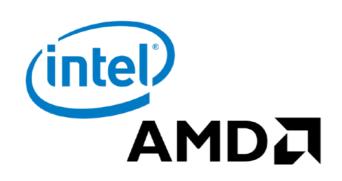
Why Does Deep Learning Work?

Actually the ideas behind deep learning are old (~1980's)

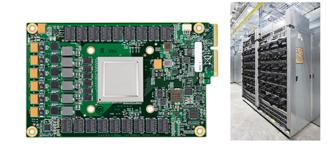
There's even a patent from 1961 that basically

Big data amounts to a convolutional neural net for OCR

• Better hardware



CPU's & Moore's law



GPU's

TPU's

Better algorithms

Many companies now make dedicated hardware for deep nets (e.g., Google, Apple, Tesla)

Structure Present in Data Matters

Neural nets aren't doing black magic

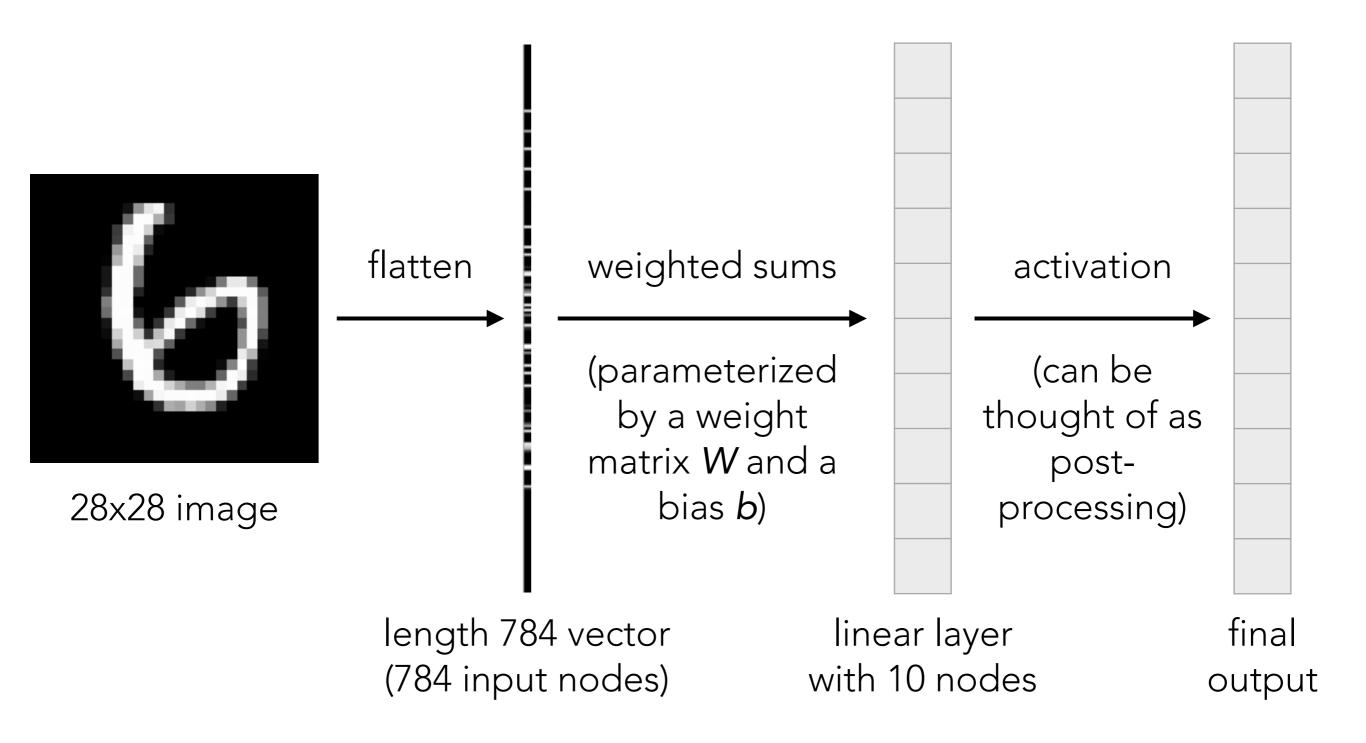
- Image analysis: convolutional neural networks (convnets) neatly incorporates basic image processing structure
- Time series analysis: recurrent neural networks (RNNs) incorporates ability to remember and forget things over time
 - Note: text is a time series of tokens
 - Note: video is a time series of images

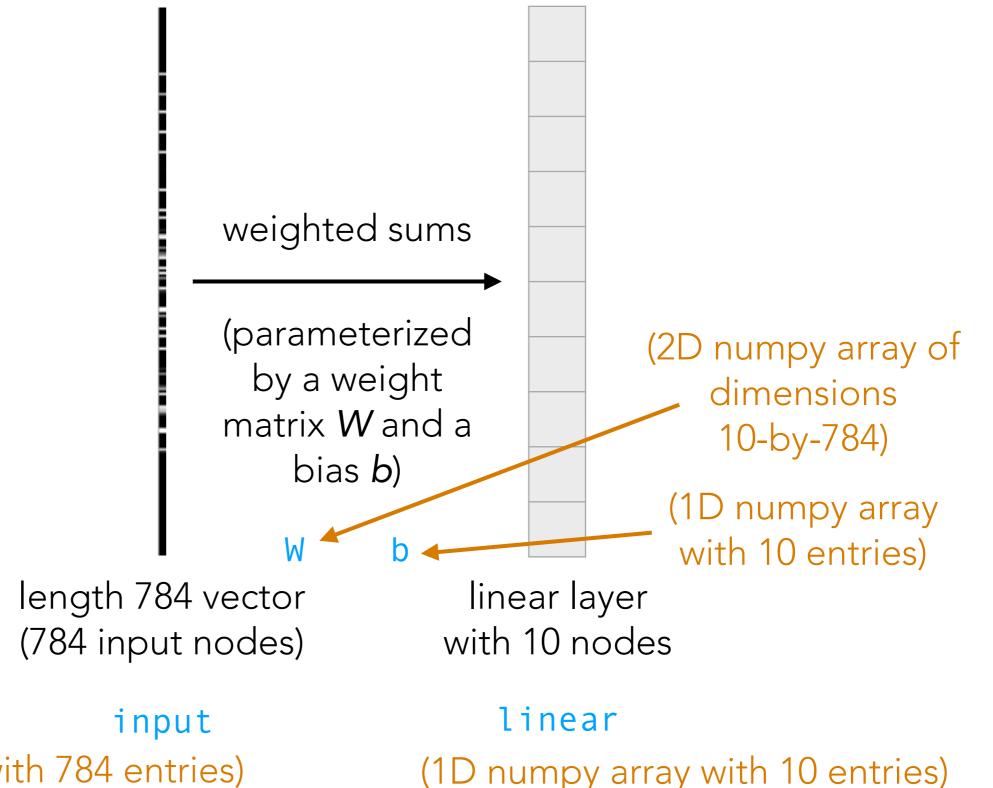
Historical note: RNNs were all the rage some years back (especially starting around the late 90s) but they've been getting replaced by **transformers** (Vaswani et al, 2017), which in turn *might* be getting replaced by **state space models** like Mamba (Gu & Dao, 2024)...

 Transformers are also for time series analysis and incorporate the concept of <u>learning how to weight previous time steps'</u> <u>contributions to a prediction at the current time step</u>

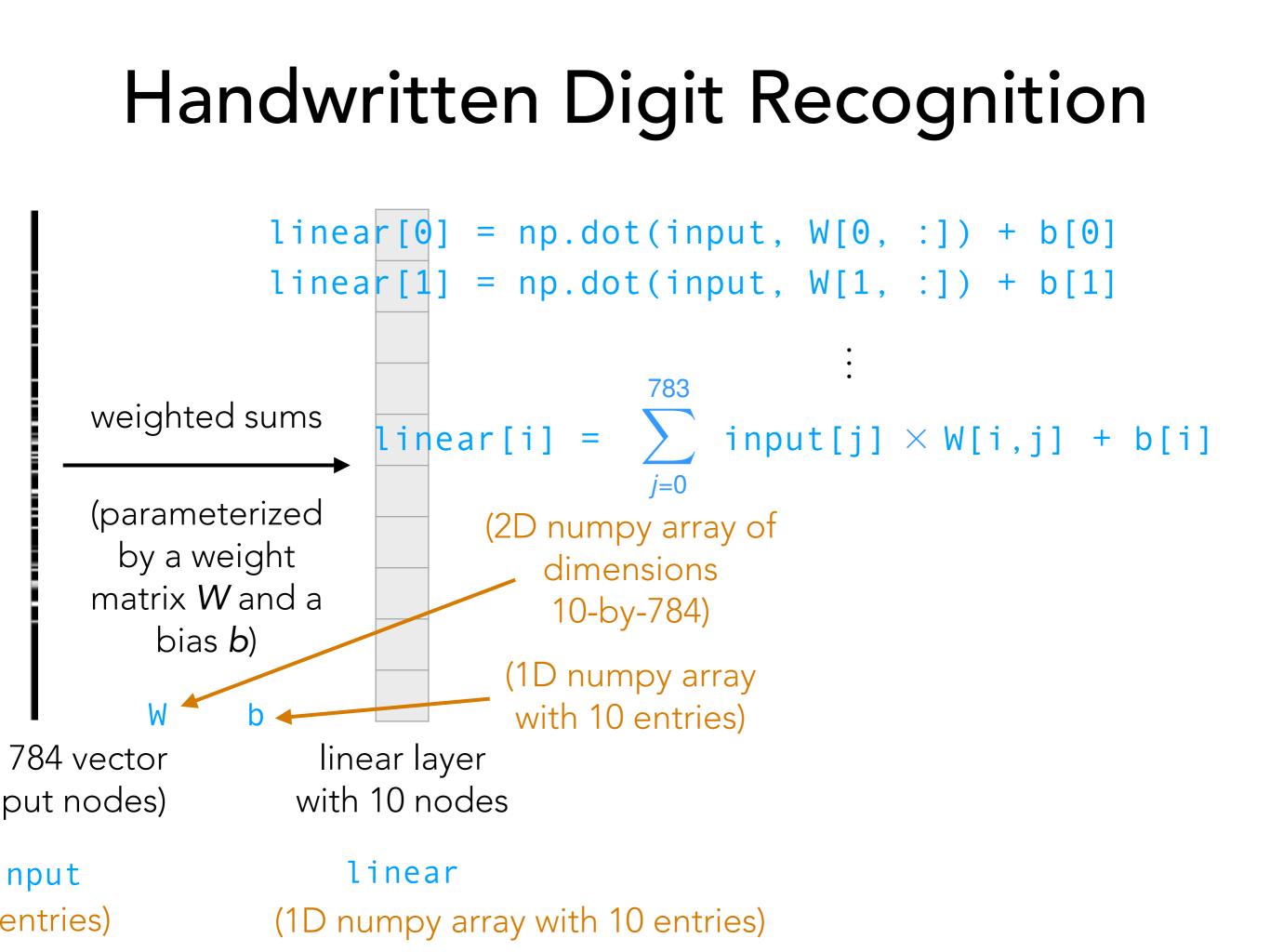
Handwritten Digit Recognition Example

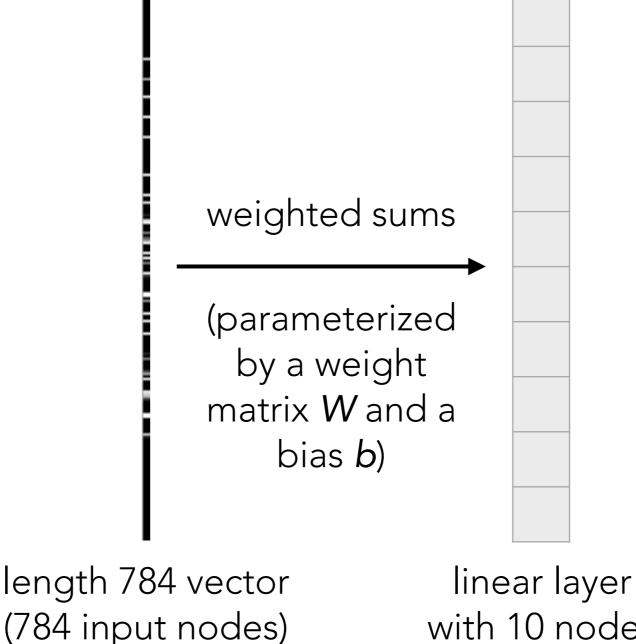
Walkthrough of 2 extremely simple neural nets



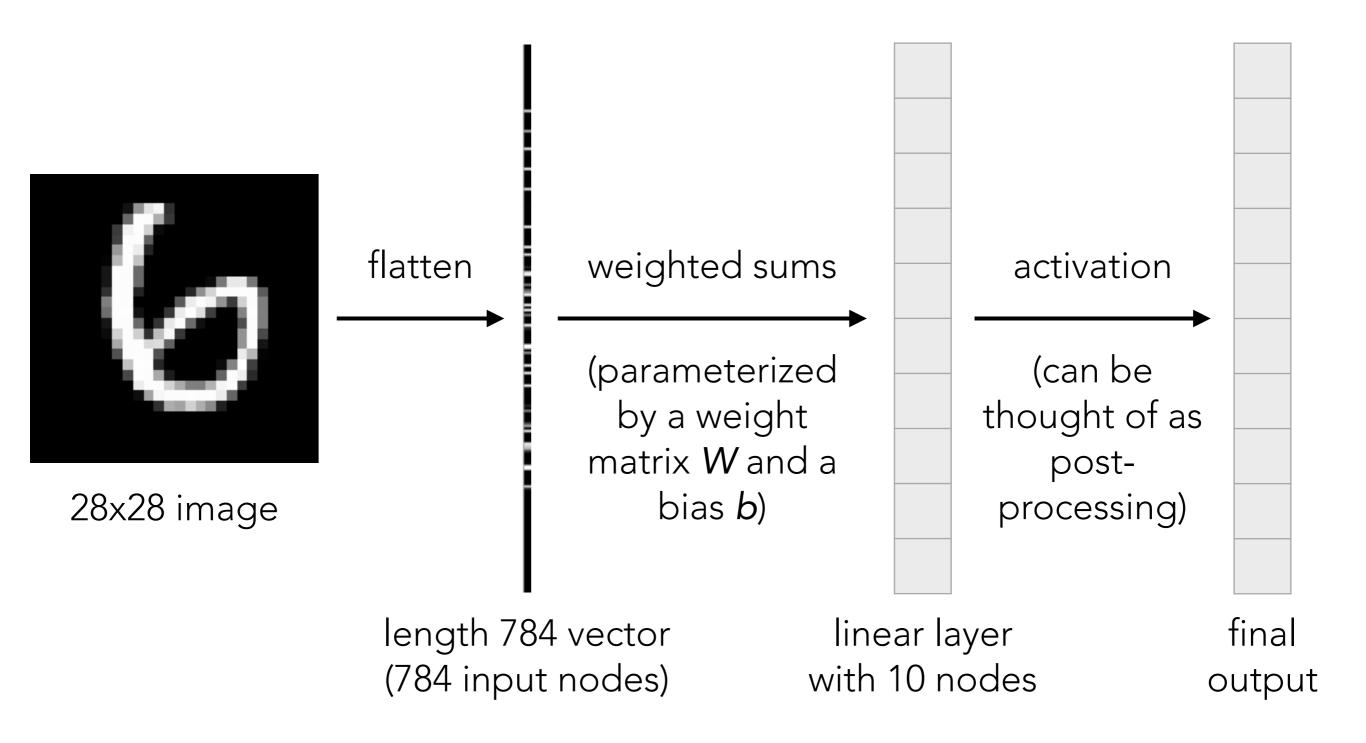


(1D numpy array with 784 entries)





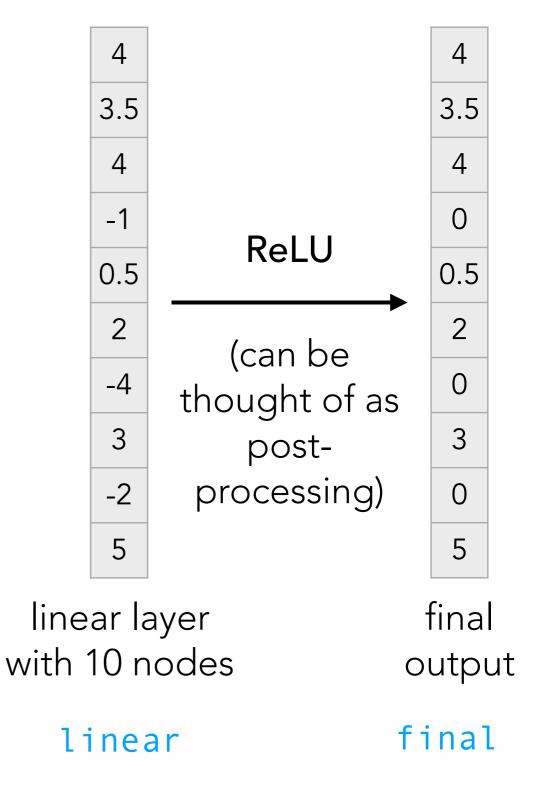
with 10 nodes



Many different activation functions possible

Example: **Rectified linear unit (ReLU)** zeros out entries that are negative

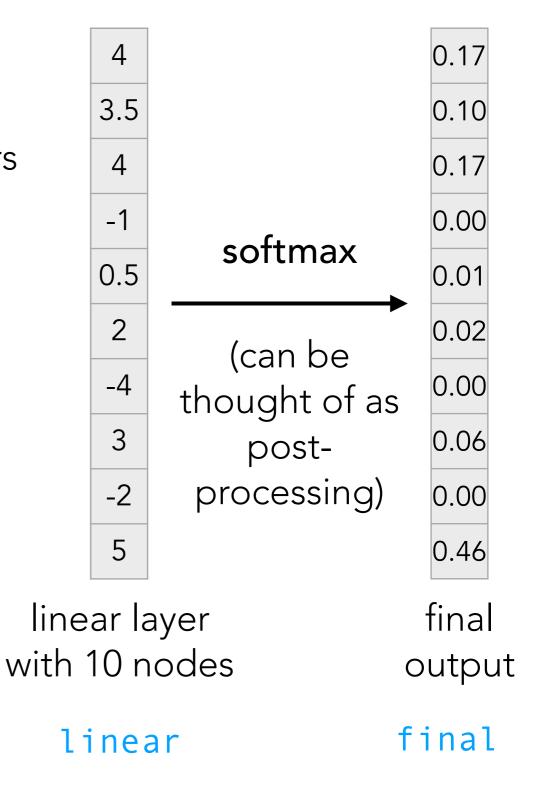
final = np.maximum(0, linear)



Many different activation functions possible

Example: **softmax** converts a table of numbers into a probability distribution

```
exp = np.exp(linear)
final = exp / exp.sum()
```



Many different activation functions possible

Example: linear activation does nothing

This is equivalent to there being no activation function

final = linear

